
Semantics of Negation in Extensional
Higher-Order Logic Programming?

Ioanna Symeonidou

Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

isymeonidou@di.uoa.gr

Abstract. There exist two different extensional approaches to the se-
mantics of positive higher-order logic programming, introduced by W.
W. Wadge and M. Bezem respectively. We show that the two approaches
coincide for a broad class of programs, but differ in general. Moreover,
we adapt Bezems technique under the well-founded, stable model and
infinite-valued semantics and show that only the latter succeeds in re-
taining extensionality in the general case. We analyse the reasons for
the failure of the well-founded adaptation of Bezem’s technique, arguing
that a three-valued setting cannot distinguish between certain predicates
that appear to have a different behaviour inside a program context, but
which happen to be identical as three-valued relations. Finally, we define
for the first time the notions of stratification and local stratification for
higher-order logic programs with negation and prove that every stratified
program has a distinguished extensional model, which can be equiva-
lently obtained through the well-founded, stable model or infinite-valued
semantics.

1 Intoduction

Out of the many extensions of traditional logic programming that have been
proposed over the years, the transition to a higher-order setting has been a
particularly intriguing and at the same time controversial potential course. The
key characteristic of higher-order logic programming is that (roughly speaking)
it allows predicates to be passed as parameters of other predicates.

Recent research [19, 2, 3, 5, 4] has investigated the possibility of providing ex-
tensional semantics to higher-order logic programming. Extensionality facilitates
the use of standard set theory in order to reason about programs, at the price
of a relatively restricted syntax. Actually this is a main difference between the
extensional and the more traditional intensional approaches to higher-order logic
programming such as the ones of [13, 9]: the latter languages have a richer syntax
but they are not usually amenable to a standard set-theoretic semantics. For a
more detailed discussion of extensionality and its importance for higher-order
logic programming, the reader can consult the discussion in Section 2 of [15].

? Dissertation advisor: Panos Rondogiannis, Professor, National and Kapodistrian
University of Athens.

Nikos Bogdos
Dissertation Advisor: Panos Rondogiannis, Professor
�



Despite the fact that only very few articles have been written regarding ex-
tensionality in higher-order logic programming, two main semantic approaches
can be identified. The first one (called “Wadge’s semantics” in the following) [19,
5] was originally proposed by W. W. Wadge [19] for positive programs and later
refined and extended by Charalambidis et al. [5]. It has been developed using
domain-theoretic tools and resembles the techniques for assigning denotational
semantics to functional languages. The second approach (called “Bezem’s se-
mantics” in the following) [2, 3], was proposed by M. Bezem also for positive
programs. This approach relies on the syntactic entities that exist in a program
and is based on processing the ground instantiation of the program.

A natural question that arises is whether one can still obtain an extensional
semantics if negation is added to programs. Wadge’s semantics has been extended
to apply to programs with negation in two ways. The extension proposed in [4]
was built upon the infinite-valued semantics [18], a relatively recent proposal to
the semantics of negation in logic programming, defined over a logic with an
infinite number of truth values. Very recently, a second extension was proposed
in [8], generalizing the well-founded semantics [11]. On the other hand, prior to
the work reported in this dissertation, no similar extension of Bezem’s semantics
had been proposed.

In this dissertation we focus on Bezem’s approach and attempt to evaluate
it, first in comparison to Wadge’s semantics as the sole existing alternative and
second with respect to its potential to generalise to programs with negation. Our
contributions can be summarized as follows:

– We show that for a very broad class of positive programs the approaches of
[2, 3] and [19, 5] coincide with respect to ground atoms that involve symbols
of the program. On the other hand, we argue that if we consider an ex-
tended language, which allows existentially quantified predicate variables in
the bodies of program clauses, then the two approaches give different results
in general. This result, published in [6, 7], will not be discussed in the present
summary of the dissertation.

– We demonstrate that neither the well-founded [11] nor the stable model [12]
adaptation of Bezem’s technique leads to an extensional model in the general
case. The result concerning the stable model semantics was published in [16],
while the result concerning the well-founded semantics was stated in [15, 17].

– We study the reasons behind the failure of the well-founded adaptation of
Bezem’s technique and the more general question of the possible existence of
an alternative extensional three-valued semantics for higher-order logic pro-
grams with negation. We indicate that in order to achieve such a semantics,
one has to make some (arguably) non-standard assumptions regarding the
behaviour of negation, for example as in the case of [8]. The argument was
first presented in [15].

– We demonstrate that by combining the technique of [2, 3] with the infinite-
valued semantics of [18], we obtain an extensional semantics for higher-order
logic programs with negation. This result was published in [14, 16]. Note that



the infinite-valued semantics was the first approach to negation to enable the
extension of the semantics of [19, 5] (see [4]).

– We define the notions of stratification and local stratification for higher-order
logic programs with negation. These notions were first defined in [14]; note
that similar notions have not yet been studied under the semantics of [19,
5, 4, 8]. We prove that the stable model, the well-founded and the infinite-
valued adaptations of Bezem’s technique give equivalent extensional models
in the case of stratified programs. The extensionality of the well-founded
model for stratified programs was shown in [15] and affirmed the importance
and the well-behaved nature of stratified programs, which was, until now,
only known for the first-order case.

The next two sections motivate in an intuitive way the main ideas behind extend-
ing Bezem’s semantics in order to apply to higher-order programs with negation.
The remaining sections develop the material in a more formal way.

2 An Intuitive Overview of the Proposed Approach

In this section we give an intuitive description of the semantic technique for
positive higher-order logic programs proposed by Bezem [2, 3] and we outline
how we use it when negation is added to programs. Given a positive program,
the starting idea behind Bezem’s approach is to take its “ground instantiation”,
in which we replace variables with well-typed terms constructed from syntactic
entities that appear in the program. For example, consider the higher-order
program (for the moment, we use ad-hoc Prolog-like syntax):

q(a).

q(b).

p(Q):-Q(a).

id(R)(X):-R(X).

In order to obtain the ground instantiation of this program, we consider each
clause and replace each variable of the clause with a ground term that has
the same type as the variable under consideration (the formal definition of this
procedure will be given in Definition 9):

q(a).

q(b).

p(q):-q(a).

id(q)(a):-q(a).

id(q)(b):-q(b).

p(id(q)):-id(q)(a).

· · ·

One can now treat the new program as an infinite propositional one (i.e., each
ground atom can be seen as a propositional variable). This implies that we can



use the standard least fixed-point construction of classical logic programming in
order to compute the set of atoms that should be taken as “true”.

Bezem demonstrated that the least fixed-point semantics of the ground in-
stantiation of every positive higher-order logic program of the language consid-
ered in [2, 3], is extensional in a sense that can be explained as follows. In our
example, q and id(q) are equal since they are both true of exactly the constants
a and b. Therefore, we expect that if p(q) is true then p(id(q)) is also true,
because q and id(q) should be considered as indistinguishable.

We use the same idea with programs that include negation: the ground in-
stantiation of such a program can be seen as a (possibly infinite) propositional
program with negation. Therefore, we can compute its semantics in any standard
way that exists for obtaining the meaning of such programs and then proceed
to examine whether the chosen model is extensional in the sense of Bezem [2,
3]. As we are going to see in the subsequent sections, when the infinite valued
model of the ground instantiation of the program is chosen for this purpose, the
semantics we obtain is indeed extensional, but the same does not hold for the
well-founded model or the stable model(s).

3 Infinite-valued Semantics

In this section we discuss the motivation behind the infinite-valued seman-
tics [18]. The key idea of this approach is that in order to give a logical semantics
to negation-as-failure and to distinguish it from ordinary negation, one needs to
extend the domain of truth values. For example, consider the program:

p←
r← ∼p
s← ∼q
t← ∼t

According to negation-as-failure, both p and s receive the value true. However,
p seems “truer” than s because there is a clause which says so, whereas s is
true only because we are never obliged to make q true. In a sense, s is true
only by default. For this reason, it was proposed in [18] to introduce a “default”
truth value T1 just below the “real” true T0, and (by symmetry) a weaker false
value F1 just above (“not as false as”) the real false F0. Then, negation-as-failure
is a combination of ordinary negation with a weakening. Thus ∼F0 = T1 and
∼T0 = F1. Since negations can be iterated, the new truth domain has a sequence
. . . , T3, T2, T1 of weaker and weaker truth values below T0 but above a neutral
value 0; and a mirror image sequence F1, F2, F3, . . . above F0 and below 0. Since
our propositional programs are possibly countably infinite, we need a Tα and
a Fα for every countable ordinal α. The intermediate truth value 0 is needed
for certain atoms that have a “pathological” negative dependence on themselves
(such as t in the above program). In conclusion, our truth domain V∞ is shaped
as follows:

F0 < F1 < · · · < Fω < · · · < Fα < · · · < 0 < · · · < Tα < · · · < Tω < · · · < T1 < T0



It is shown in [18] that every first-order logic program has a unique minimum
infinite-valued model, under an ordering relation v. For example, the minimum
infinite-valued model of the program presented above may be described as the
set {(p, T0), (q, F0), (r, F1), (s, T1), (t, 0)}.

4 The Syntax of H

In this section we define the syntax of our language H. H uses a simple type
system with two base types: o, the boolean domain, and ι, the domain of data ob-
jects. The composite types are partitioned into three classes: functional (assigned
to function symbols), predicate (assigned to predicate symbols) and argument
(assigned to parameters of predicates).

Definition 1. A type can either be functional, predicate, or argument, denoted
by σ, π and ρ respectively and defined as:

σ := ι | (ι→ σ)
π := o | (ρ→ π)
ρ := ι | π

We will use τ to denote an arbitrary type. The binary operator → is right-
associative. It can be easily seen that every predicate type π can be written in
the form ρ1 → · · · → ρn → o, n ≥ 0 (for n = 0 we assume that π = o).

Definition 2. The alphabet of H consists of the following: predicate variables
of every predicate type π (denoted by capital letters such as Q,R, S, . . .); indi-
vidual variables of type ι (denoted by capital letters such as X,Y,Z, . . .); pred-
icate constants of every predicate type π (denoted by lowercase letters such as
p, q, r, . . .); individual constants of type ι (denoted by lowercase letters such as
a, b, c, . . .); function symbols of every functional type σ 6= ι (denoted by lower-
case letters such as f, g, h, . . .); the inverse implication constant ←; the negation
constant ∼; the comma; and the left and right parentheses.

Arbitrary variables will usually be denoted by V and its subscripted versions.

Definition 3. The set of terms of H is defined as follows: every predicate vari-
able (resp., predicate constant) of type π is a term of type π; every individual
variable (resp., individual constant) of type ι is a term of type ι; if f is an n-ary
function symbol and E1, . . . ,En are terms of type ι then (f E1 · · ·En) is a term
of type ι; if E1 is a term of type ρ→ π and E2 a term of type ρ then (E1 E2) is
a term of type π.

Definition 4. The set of expressions of H is defined as follows: a term of type
ρ is an expression of type ρ; if E is a term of type o then (∼E) is an expression
of type o.

We will omit parentheses when no confusion arises. To denote that an expression
E has type ρ we will often write E : ρ. We will write vars(E) to denote the set



of all the variables in E. Expressions (respectively, terms) that have no variables
will be referred to as ground expressions (respectively, ground terms). Terms of
type o will be referred to as atoms and expressions of type o will be referred to
as literals.

Definition 5. A clause of H is a formula p E1 · · ·En ← L1, . . . , Lm, where p
is a predicate constant of type ρ1 → · · · → ρn → o, E1, . . . ,En are terms of
types ρ1, . . . , ρn respectively, so that all Ei with ρi 6= ι are distinct variables,
and L1, . . . , Lm are literals. The term p E1 · · ·En is called the head of the clause
and the conjunction L1, . . . , Lm is its body. A program P of H is a finite set of
clauses.

Example 1. The program below defines the subset relation over unary predi-
cates:

subset S1 S2 ← ∼(nonsubset S1 S2)

nonsubset S1 S2 ← (S1 X), ∼(S2 X)

The ground instantiation of a program is described by the following defini-
tions:

Definition 6. A substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En}
where the Vi’s are different variables and each Ei is a term having the same
type as Vi. The domain {V1, . . . ,Vn} of θ is denoted by dom(θ). If all the terms
E1, . . . ,En are ground, θ is called a ground substitution.

Definition 7. Let θ be a substitution and E be an expression. Then, Eθ is
an expression obtained from E as follows: Eθ = E if E is a predicate con-
stant or individual constant; Vθ = θ(V) if V ∈ dom(θ), otherwise Vθ = V;
(f E1 · · ·En)θ = (f E1θ · · ·Enθ); (E1 E2)θ = (E1θ E2θ); (∼E)θ = (∼Eθ). If θ is
a ground substitution with vars(E) ⊆ dom(θ), then the ground expression Eθ is
called a ground instance of E.

Definition 8. For a program P, we define the Herbrand universe for every ar-
gument type ρ, denoted by UP,ρ to be the set of all ground terms of type ρ that
can be formed out of the individual constants, function symbols, and predicate
constants in the program.

Definition 9. Let P be a program. A ground instance of a clause p E1 · · ·En ←
L1, . . . , Lm of P is a formula (p E1 · · ·En)θ ← L1θ, . . . , Lmθ, where θ is a ground
substitution whose domain is the set of all variables that appear in the clause,
such that for every V ∈ dom(θ) with V : ρ, θ(V) ∈ UP,ρ. The ground instantiation
of a program P, denoted by Gr(P), is the (possibly infinite) set that contains all
the ground instances of the clauses of P.

5 The Semantics of H

In [2, 3] M. Bezem developed a semantics for higher-order logic programs that
is a generalization of the familiar Herbrand-model semantics of classical (first-
order) logic programs. As such, the approach proposes that essentially predicates



are understood as mapping tuples of syntactic objects to truth values. Because
of this, the following simplified definition of a higher-order interpretation is pos-
sible:

Definition 10. A (higher-order) Herbrand interpretation I of a program P is a
function which assigns to each ground atom of UP,o, and to the negation thereof,
an element in a specified domain of truth values.

The truth domain used in [2, 3] is the traditional two-valued one, as only pos-
itive programs are studied. In this dissertation we also consider Herbrand in-
terpretations with a three-valued truth domain, i.e. {false, 0, true}, as well as
interpretations with an infinite-valued truth domain, i.e. V∞.

The concept of “Herbrand model” of a higher-order program can be defined
as in classical logic programming.

Definition 11. Let P be a program and I be a Herbrand interpretation of P. We
say I is a model of P if I(A) ≥ min{I(L1), . . . , I(Ln)} holds for every ground
instance A← L1, . . . , Lm of a clause of P.

Bezem’s semantics is based on the observation that, given a positive higher-
order program, the minimum model of its ground instantiation serves as a Her-
brand interpretation for the program itself. We follow the same idea for programs
with negation: we can use as an interpretation of a given higher-order program
P, the model defined by any semantics that applies to its ground instantiation.
It is trivial to see that any such model is also a Herbrand model of P.

In the following sections we focus on the well-founded [11], stable [12] and
infinite-valued [18] models. We investigate if these models enjoy the extension-
ality property, formally defined by Bezem [2, 3] through relations ∼=I,ρ over the
set of ground expressions of a given type ρ and under a given interpretation I.
These relations intuitively express extensional equality of type ρ, in the sense
discussed in Section 2. The formal definition is as follows:

Definition 12. Let I be a Herbrand interpretation for a given program P. For
every argument type ρ we define the relations ∼=I,ρ on UP,ρ as follows. Let E,E′ ∈
UP,ρ; then E ∼=I,ρ E

′ if and only if: ρ = ι and E = E′; or ρ = o and I(E) = I(E′);
or ρ = ρ′ → π and ED ∼=I,π E′ D′ for all D,D′ ∈ UP,ρ′ , such that D ∼=I,ρ′ D

′.

Generally, such relations are symmetric and transitive [2, 3] (partial equiva-
lences). Whether they are moreover reflexive (full equivalences), depends on the
specific interpretation, which leads to the notion of extensional interpretation:

Definition 13. Let P be a program and let I be a Herbrand interpretation of P.
We say I is extensional if for all argument types ρ, ∼=I,ρ is reflexive, i.e. for all
E ∈ UP,ρ, E ∼=I,ρ E.

6 Extensionality Study of Selected Models

In this section we demonstrate that the adaptation of Bezem’s technique under
the the two main approaches to negation known from first-order logic program-
ming, i.e. the stable model semantics and the well-founded semantics, do not in



general preserve extensionality. On the other hand, we indicate that the infinite-
valued semantics can lead to an extensional semantics for the programs of our
higher-order language H.

We begin by showing that the ground instantiation of a H program may not
always have extensional stable models.

Example 2. Consider the program:

r Q← ∼(s Q), ∼(r p)

s Q← ∼(r Q), ∼(s q)

q a←
p a←

where, in the first two clauses, Q is of type ι → o. By examining the ground
instantiation of the above program, one can see that it has the non-extensional
stable model {(p a), (q a), (s p), (r q)}. However, it has no extensional
stable models: there are four extensional interpretations that are potential can-
didates, namely M1 = {(p a), (q a)}, M2 = {(p a), (q a), (r p), (r q)},
M3 = {(p a), (q a), (s p), (s q)}, and M4 = {(p a),(q a),(s p),(s q),
(r p), (r q)}; but none of these models is a stable model of the program. ut

The above examples seem to suggest that the extensional approach of [2, 3] is
incompatible with the stable model semantics. Unfortunately, the same holds for
the well-founded semantics.

Example 3. Consider the higher-order program P:

s Q ← Q (s Q)

p R ← R

q R ← ∼(w R)

w R ← ∼R

where the predicate variable Q is of type o→ o and the predicate variable R is of
type o. It is not hard to see that the predicates p : o→ o and q : o→ o represent
the same relation, namely {(v, v) | v ∈ {false, 0, true}}.

Consider the predicate s : (o→ o)→ o. By taking the ground instances of the
clauses involved, it is easy to see that the atom (s p), under the well-founded
semantics, will be assigned the value false. On the other hand, (s q) is assigned
the value 0, under the well-founded semantics, since the ground instances of the
relevant clauses form a circular definition involving negation. In other words, p
and q are extensionally equal, but (s p) and (s q) have different truth values.

The above discussion is based on intuitive arguments, but it is not hard to
formalize it and obtain the following lemma:

Lemma 1. The well-founded model MP of the program of Example 3, is not
extensional.

In light of the above negative results, the next theorem suggests that the
infinite-valued model adaptation of Bezem’s technique is a more suitable candi-
date for capturing the extensional semantics of general H programs.



Theorem 1. The infinite-valued model of every program of H is extensional.

A question that arises is whether there exists a broad class of programs
that are extensional under the well-founded semantics. The next section answers
exactly this question.

7 Extensionality of Stratified Programs

In this section we argue that the well-founded model of a stratified higher-order
program [16] enjoys the extensionality property. In the following definition, a
predicate type π is understood to be greater than a second predicate type π′, if
π is of the form ρ1 → · · · → ρn → π′, where n ≥ 1.

Definition 14. A program P is called stratified if and only if it is possible to
decompose the set of all predicate constants that appear in P into a finite number
r of disjoint sets (called strata) S1, S2, . . . , Sr, such that for every clause H ←
A1, . . . ,Am,∼B1, . . . ,∼Bn in P, where the predicate constant of H is p, we have:

1. for every i ≤ m, if Ai starts with a predicate constant q, then stratum(q) ≤
stratum(p);

2. for every i ≤ m, if Ai starts with a predicate variable Q, then for all predicate
constants q that appear in P, such that the type of q is greater than or equal
to the type of Q, it holds stratum(q) ≤ stratum(p);

3. for every i ≤ n, if Bi starts with a predicate constant q, then stratum(q) <
stratum(p);

4. for every i ≤ n, if Bi starts with a predicate variable Q, then for all predicate
constants q that appear in P, such that the type of q is greater than or equal
to the type of Q, it holds stratum(q) < stratum(p);

where stratum(r) = i if r belongs to Si.

Evidently, the stratification for classical logic programs [1] is a special case of
the above definition.

Example 4. It is straightforward to see that the program:

p Q ← ∼(Q a)

q a ←

is stratified. However, it is easy to check that the program:

p Q ← ∼(Q a)

q a a ← p (q a)

is not stratified because if the term (q a) is substituted for Q we get a circularity
through negation. The type of q is ι→ ι→ o and it is greater than the type of
Q which is ι→ o.

As it turns out, stratified higher-order logic programs have an extensional
two-valued well-founded model.

Theorem 2. The well-founded model MP of a stratified program P is exten-
sional and does not assign the value 0.



8 The Restrictions of 3-Valued Approaches

In this section we re-examine the counterexample of Example 3 but now from
a broader perspective. In particular, we indicate that in order to achieve an ex-
tensional three-valued semantics for higher-order logic programs with negation,
one has to make some strong assumptions regarding the behaviour of negation
in such programs.

Under the infinite-valued adaptation of Bezem’s approach and also under the
domain-theoretic infinite-valued approach of [4], the semantics of that program
is extensional. The reason is that both of these approaches differentiate the
meaning of p from the meaning of q. Under the truth domain in both approaches,
i.e. V∞, predicate p corresponds to the infinite-valued relation: p = {(v, v) | v ∈
V∞} while predicate q corresponds to the relation: q = {(Fα, Fα+2) | α <
Ω} ∪ {(0, 0)} ∪ {(Tα, Tα+2) | α < Ω} where Ω is the first uncountable ordinal.
Obviously, the relations p and q are different as sets and therefore it is not a
surprise that under both the infinite-valued adaptation of Bezem’s semantics
presented in this dissertation and the semantics of [4], the atoms (s p) and (s

q) have different truth values.

Assume now that we want to devise an (alternative to the well-founded exten-
sion of Bezem’s semantics presented in this dissertation) extensional three-valued
semantics for H programs. Under such a semantics, it seems reasonable to as-
sume that p and q would correspond to the same three-valued relation, namely
{(v, v) | v ∈ {false, 0, true}}. Notice however that p and q are expected to have
a different operational behaviour. In particular, given the program:

s Q ← Q (s Q)

p R ← R

we expect the atom (s p) to have the value false (due to the circularity that
occurs when we try to evaluate it), while given the program:

s Q ← Q (s Q)

q R ← ∼(w R)

w R ← ∼R

we expect the atom (s q) to have the value 0 due to the circularity through
negation. At first sight, the above discussion seems to suggest that a three-
valued extensional semantics for all higher-order logic programs with negation
is not possible.

However, the above discussion is based mainly on our experience regarding
the behaviour of first-order logic programs with negation. One could advocate
a semantics under which (s q) will also return the value false, arguing that
the definition of q uses two negations which cancel each other. This cancella-
tion of double negations is not an entirely new idea; for example, for certain
extended propositional programs, the semantics based on approximation fix-
point theory has the same effect (see for example Denecker et al. [10][page 185,



Example 1]). We have recently developed such an extensional three-valued se-
mantics for higher-order logic programs with negation, using an approach based
on approximation fixpoint theory in [8].

9 Conclusions and Future Work

We have for the first time adapted Bezem’s technique to define an extensional
semantics for higher-order programs with negation, achieved through the infinite-
valued approach [18]. On the other hand, we have shown that an adaptation of
the technique under the well-founded or the stable model semantics does not in
general lead to an extensional semantics. Finally, we have defined the notions
of stratification and local stratification and proven that the class of stratified
programs is a notable exception to the previous negative result.

It poses an interesting open question whether the class of locally stratified
higher-order logic programs (see [16]) is well-behaved with respect to extension-
ality, or not. Another matter worth looking into is the relationships between the
infinite-valued extension of Bezem’s semantics presented in this dissertation and
its domain theoretic counterpart. The most intriguing question, perhaps, is the
comparative evaluation of the infinite-valued extensions of Bezem’s semantics
and the domain theoretic semantics against the three-valued domain theoretic
semantics of [8].

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kaufmann, 1988.

2. Marc Bezem. Extensionality of simply typed logic programs. In Danny De Schreye,
editor, Logic Programming: The 1999 International Conference, Las Cruces, New
Mexico, USA, November 29 - December 4, 1999, pages 395–410. MIT Press, 1999.

3. Marc Bezem. An improved extensionality criterion for higher-order logic programs.
In Laurent Fribourg, editor, Computer Science Logic, 15th International Workshop,
CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-
13, 2001, Proceedings, volume 2142 of Lecture Notes in Computer Science, pages
203–216. Springer, 2001.

4. Angelos Charalambidis, Zoltán Ésik, and Panos Rondogiannis. Minimum model
semantics for extensional higher-order logic programming with negation. TPLP,
14(4-5):725–737, 2014.

5. Angelos Charalambidis, Konstantinos Handjopoulos, Panos Rondogiannis, and
William W. Wadge. Extensional higher-order logic programming. ACM Trans.
Comput. Log., 14(3):21, 2013.

6. Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Equiva-
lence of two fixed-point semantics for definitional higher-order logic programs. In
Ralph Matthes and Matteo Mio, editors, Proceedings 10th International Workshop
on Fixed Points in Computer Science, (FICS 2015), Berlin, Germany, September
11-12, 2015, volume 191 of EPTCS, pages 18–32, 2015.



7. Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Equiv-
alence of two fixed-point semantics for definitional higher-order logic programs
(extended version of conference paper). Theoretical Computer Science, 668:27–42,
2017.

8. Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Approxi-
mation fixpoint theory and the well-founded semantics of higher-order logic pro-
grams (in press). Theory and Practice of Logic Programming, arXiv:1804.08335,
2018, 2018. (To be presented at the 34th International Conference on Logic Pro-
gramming (ICLP 2018), Oxford, UK, July 14 - 17 2018).

9. Weidong Chen, Michael Kifer, and David Scott Warren. Hilog: A foundation for
higher-order logic programming. The Journal of Logic Programming, 15(3):187 –
230, 1993.

10. Marc Denecker, Maurice Bruynooghe, and Joost Vennekens. Approximation fix-
point theory and the semantics of logic and answers set programs. In Esra Erdem,
Joohyung Lee, Yuliya Lierler, and David Pearce, editors, Correct Reasoning - Es-
says on Logic-Based AI in Honour of Vladimir Lifschitz, volume 7265 of Lecture
Notes in Computer Science, pages 178–194. Springer, 2012.

11. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded se-
mantics for general logic programs. J. ACM, 38(3):620–650, 1991.

12. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Program-
ming, Proceedings of the Fifth International Conference and Symposium, Seattle,
Washington, August 15-19, 1988 (2 Volumes), pages 1070–1080. MIT Press, 1988.

13. Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2012.

14. Panos Rondogiannis and Ioanna Symeonidou. Extensional semantics for higher-
order logic programs with negation. In Loizos Michael and Antonis C. Kakas,
editors, Logics in Artificial Intelligence - 15th European Conference (JELIA 2016),
Larnaca, Cyprus, November 9-11, 2016, Proceedings, volume 10021 of Lecture Notes
in Computer Science, pages 447–462, 2016.

15. Panos Rondogiannis and Ioanna Symeonidou. The intricacies of three-valued ex-
tensional semantics for higher-order logic programs. Theory and Practice of Logic
Programming, 17(5-6):974–991, 2017. (Presented at the 33rd International Con-
ference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 -
September 1 2017. Best Paper Award).

16. Panos Rondogiannis and Ioanna Symeonidou. Extensional Semantics for Higher-
Order Logic Programs with Negation (Extended version of conference paper). Log-
ical Methods in Computer Science, Volume 14, Issue 2, July 2018.

17. Panos Rondogiannis and Ioanna Symeonidou. The intricacies of three-valued exten-
sional semantics for higher-order logic programs (in press). In 27th International
Joint Conference on Artificial Intelligence (IJCAI 2018) (“Best Sister Confer-
ences” track), Stockholm, Sweden, July 13-19, 2018, Proceedings, 2018.

18. Panos Rondogiannis and William W. Wadge. Minimum model semantics for logic
programs with negation-as-failure. ACM Trans. Comput. Log., 6(2):441–467, 2005.

19. William W. Wadge. Higher-order horn logic programming. In Vijay A. Saraswat
and Kazunori Ueda, editors, Logic Programming, Proceedings of the 1991 Inter-
national Symposium, San Diego, California, USA, Oct. 28 - Nov 1, 1991, pages
289–303. MIT Press, 1991.


